ОБЗОРЫ | REVIEWS

ЗНАЧЕНИЕ ДЕФИЦИТА ВИТАМИНА D В ФОРМИРОВАНИИ БРОНХООБСТРУКТИВНОГО СИНДРОМА У ДЕТЕЙ

© Н.А. Белых, В.В. Амелина

Рязанский государственный медицинский университет имени академика И.П. Павлова, Рязань, Российская Федерация

Данные научной литературы, опубликованной за последние десятилетия, указывают на углубление осведомленности о многогранном действии витамина D в организме человека. Свидетельства крупномасштабных исследований способствуют пониманию того, что дефицит витамина D является фактором риска многих заболеваний. Рецепторы к витамину D (VDR) идентифицированы более чем в 40 тканях-мишенях организма, что определяет множество его биологических эффектов. Витамин D влияет на метаболизм кальция и фосфора, иммунную функцию, пролиферацию клеток, дифференцировку и апоптоз. Дефицит витамина D связан с многочисленными последствиями для здоровья, включая рахит у детей или остеомаляцию у взрослых, повышенный риск рака, аутоиммунных и инфекционных заболеваний, сахарного диабета 1 и 2 типа, артериальной гипертензии, сердечно-сосудистой патологии и т.д. Гены, регулируемые витамином D, кодируют антимикробные пептиды, обеспечивая защиту против бактерий, вирусов и грибов. В последние десятилетия активно изучается роль гиповитаминоза D в предрасположенности детей частым респираторным заболеваниям, в том числе, сопровождающимся бронхообструктивным синдромом. На сегодняшний день доказано, что дети с дефицитом витамина D имеют больший риск респираторных инфекций. В исследованиях продемонстрировано, что назначение витамина D, детям с рецидивирующими свистящими хрипами параллельно с ингаляционными глюкокортикоидами, уменьшают риск обострения, вызванного респираторными инфекциями, однако антенатальная профилактика гиповитаминоза D не влияет на частоту данной патологии. В современных условиях обеспеченность организма витамином D оценивается путем определения концентрации 25(OH)D. В настоящее время распространенность дефицита витамина D в популяции достигает эпидемического уровня, в том числе в России. Результаты многоцентрового исследования «Родничок», продемонстрировали, что в разных городах страны недостаточный уровень витамина D имеют 48% детей раннего возраста, а дефицит – 90,8%. По оценкам многочисленных исследований применение рекомендованных ранее профилактических доз витамина D является недостаточным для реализации его «неклассических» функций. Таким образом, на сегодняшний день значительно расширились представления о роли витамина D в организме, однако возможности его применения в комплексе профилактических мероприятий и адъювантной терапии инфекций, сопровождающихся БОС, требует дальнейших научных исследований.

Ключевые слова: витамин Д; дети; острые респираторные инфекции; бронхообструктивный синдром; профилактика.

SIGNIFICANCE OF VITAMIN D DEFICIENCY IN THE FORMATION OF BRONCHIAL OBSTRUCTIVE SYNDROME IN CHILDREN

N.A. Belykh, V.V. Amelina

Ryazan State Medical University, Ryazan, Russian Federation

The literature published over the last decades indicates increasing awareness of vitamin D's multidirectional action in the human body. Evidence from large scale studies contributed to the understanding of vitamin D deficiency being a significant risk factor for many diseases. Receptors to vitamin D (VDR) are identified in more than 40 target tissues. Vitamin D may modify immune function, cell proliferation, differentiation and apoptosis. Vitamin D deficiency has been associated with numerous consequences for health, including rickets in children or osteomalacia in adults, increased risk of cancer, autoimmune diseases, infectious diseases, type 1 and type 2 diabetes mellitus, arterial hypertension, cardiovascular pathology and other diseases. Vitamin D regulated genes code for antimicrobial peptides providing protection against bacteria, viruses and fungi. The role of vitamin D deficiency in the predisposition of children to frequent respiratory diseases including those with broncho-obstructive syndrome has been actively studied in recent decades. To date, it has been proven that children with vitamin D deficiency have a greater risk of respiratory infections. It was demonstrated that administration of vitamin D to children with recurrent wheezes as adjuvant therapy in parallel with inhalation glucocorticoids, reduces the risk of exacerbation of wheezing caused by respiratory infections. However, antenatal hypovitaminosis D prophylaxis does not affect the frequency of this pathology. Vitamin D status is estimated by blood concentration of 25(OH)D. Currently, the prevalence of vitamin D deficiency in the population reaches an epidemic level, incl. in Russia. The results of a multicentre study «Rodnichok» showed insufficient vitamin D levels in 48% and the deficit in 90.8% toddlers in different cities. According to numerous studies, the use of the recommended preventive doses of vitamin D is insufficient to implement the «non-classic» functions of vitamin D. Thus, to date, the understanding of the role of vitamin D in the body has significantly expanded, but the possibility of using vitamin D in a complex of preventive measures and adjuvant therapy infections with wheezing, requires further scientific research.

Keywords: *vitamin D; children; acute respiratory infections; wheezing; prevention.*

В последние годы актуальная проблема профилактики и эффективной терапии бронхообструктивного синдрома (БОС) у детей привлекает все больше внимания педиатров и врачей смежных специальностей ввиду распространенности данного состояния. По данным Симоновой О.И. и соавт. (2015), хотя бы один эпизод обструктивного бронхита регистрируется: «...один раз у каждого третьего ребенка в возрасте до 3 лет и у половины детей дошкольного возраста [1]. БОС в раннем детском возрас-

те на фоне острой респираторной инфекции нижних дыхательных путей выявляется в 5-40% случаев, при отягощенном аллергологическом анамнезе» [1-3].

У детей младше 5 лет большинство зарубежных ученых описывают три типа свистящих хрипов («wheezing»): ранние транзиторные свистящие хрипы, свистящие хрипы с поздним началом и персистирующие свистящие хрипы с ранним началом (до 3-х лет) [4]. Согласно другой классификации, выделяют три «wheezing» фе-

нотипа в детском возрасте: ранние транзиторные свистящие хрипы, неатопические свистящие хрипы, или IgE-ассоциированные свистящие хрипы/астма [5,6].

Обструкция дыхательных путей (лат. obstructio — запирание, преграда, помеха) возникает вследствие затрудненного прохождения воздуха из-за препятствия по ходу бронхиального дерева [1], прежде всего бронхов мелкого калибра, что приводит к усилению работы дыхательной мускулатуры для создания повышенного положительного давления.

Под маской БОС может скрываться, помимо ОРИ, множество других нозологических форм и патологических состояний, прежде всего аллергические заболевания и гастроэзофагеальный рефлюкс. Кроме того, на сегодняшний день активно изучается роль дефицита витамина D в предрасположенности к частым респираторным заболеваниям, в т.ч., сопровождающимся БОС [1]. Еще в 80-х годах минувшего столетия было доказано, что дети с хроническим бронхитом в 2,5 раза чаще страдают рахитом, при этом у детей с тяжелой степенью рахита риск формирования хронического бронхита возрастает в 10 раз [7,8].

Метаболизм витамина D(VD) уже изучен достаточно подробно, но в последние годы в связи с возросшим к нему интересом открываются все новые данные. В последние годы VD рассматривается как стероидный гормон, выполняющий не только функцию регуляции фосфорно-

кальциевого гомеостаза, но и множество «неклассических» биологических эффектов. метаболизма сывороточного Регуляция кальция и фосфатов имеет первостепенное значение для минерализации костной ткани, мышечного сокращения, осуществления нервной проводимости и многих других клеточных функций. Главными регуляторами фосфорно-кальциевого гомеостаза, наряду с VD, являются паратиреоидный гормон (ПТГ) и кальцитонин [10]. Схема метаболизма VD и его роль в кальциево-фосфорном обмене представлены на рисунке 1.

Значение VD в регуляции иммунной системы впервые было оценено после обнаружения рецепторов витамина D (VDR) во многих органах и тканях, что определяет разнообразие функций витамина D в организме (табл. 1). VDR являются внутриклеточными ядерными рецепторами, к которым также относятся рецепторы стероидных гормонов, щитовидной железы, ретиноевой кислоты, жирных кислот, эйкозаноидов. Эта группа рецепторов регулирует экспрессию генов, контролирующих функции пролиферации, дифференциации, метаболизма, транспорта ионов, апоптоза, и т.д. Таким образом, активные компоненты метаболизма VD и VDR объединяют в эндокринную систему VD, функции которой состоят в способности генерировать биологические реакции более чем в 40 тканях-мишенях за счет геномных механизмов и внегеномных реакций [12], осуществляемых при взаимодействии с VDR.

Таблица 1 Клетки, ткани и органы, экспрессирующие VDR

Клетки, ткани и органы с VDR		
Жировая ткань	Кожа	Плацента
Костная ткань	Волосяной фолликул Матка	
Хрящевая ткань	Почки Яичник	
Гладкие мышцы	Фетальная печень Яичко	
Сердечная мышца	Легкие	Придаток яичка
Фетальная мышечная ткань	Головной мозг	Околоушные железы
Надпочечники	Паращитовидные железы	Сетчатка
Раковые клетки	Гипофиз	Костный мозг
Желудок	Тимус	Панкреатические β-клетки
Тонкий кишечник	Щитовидная железа	Остеобласты
Толстый кишечник	Молочная железа	Т- и В-лимфоциты

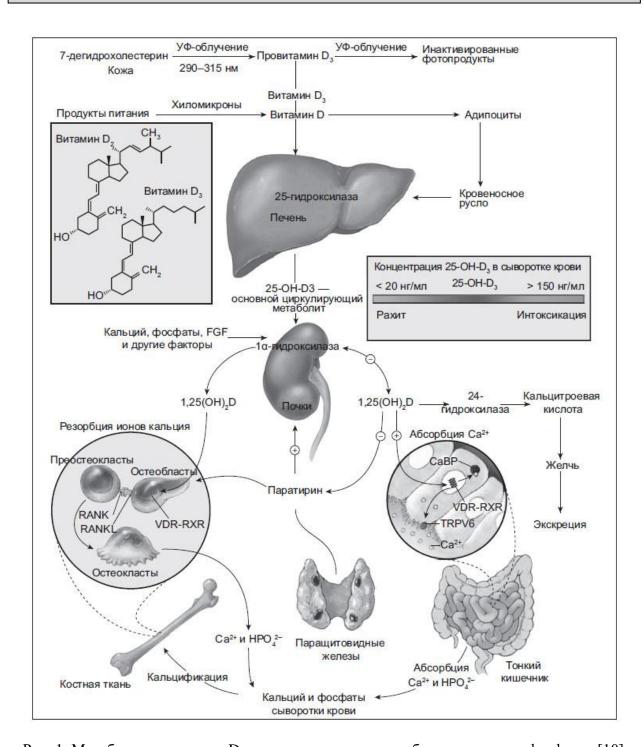


Рис. 1. Метаболизм витамина D и его роль в регуляции обмена кальция и фосфатов [10]

Наибольшая концентрация VDR локализована в эпителии тонкого и толстого кишечника, бронхов, дистальных отделах канальцев почек, паращитовидных желез, тимуса, остеобластах. Содружественным VDR является ретиноидный Xрецептор (RXR) — ядерный рецептор к витамину А. Образованный этими двумя рецепторами комплекс VDR-RXR в присутствии активной формы витамина D (1,25(OH)2D) связывается с соответствующим участком генома и запускает механизм транскрипции генов с последующей трансляцией соответствующих белковых молекул. Таким образом, при воздействии VD происходит синтез белков, определяющих течение метаболических процессов в тканях [12].

VDR также обнаружены в различных клеточных линиях, участвующих, в первую очередь, в иммунной регуляции. К таковым относятся мононуклеары, дендритные клетки, антигенпредставляющие клетки и активированные лимфоциты, активные Т-лимфоциты, макрофаги. Активная форма VD, 1-альфа,25(OH)2D, оказывает прямое воздействие на Т-хелперы, Трегуляторы, активированные Т-клетки и дендритные клетки [13,14].

VDR активны на клеточном уровне в легочной ткани, респираторном эпителии и гладких мышцах бронхов. Ген VDR расположен на 12 хромосоме, в области, связанной с заболеванием и тяжестью бронхиальной астмы (БА) и «wheezing». Найдены доказательства того, что 1,25(ОН)2D имеет рецепторы в нескольких типах клеток легких и способствует формированию ремиссии рецидивирующих свистящих хрипов различными механизмами: снижает интенсивность воспалительной реакции, уменьшает гиперплазию и повышает воздействие экзогенных стероидов [15].

Витамин Д участвует в пролиферации и дифференцировке клеток крови и иммунокомпетентных клеток, регулирует иммуногенез и реакции иммунитета, стимулирует выработку эндогенных антимикробных пептидов в эпителии и фагоцитах, лимитирует воспалительные процессы путем регуляции выработки цитокинов, модулирует врожденную иммунную систему и адаптивный иммунный ответ, регулирует апоптоз. Кроме того изучена способность витамина Д угнетать пролиферацию и дифференцировку клеток, что серьезно тормозит активность аутоиммунных реакций и снижает риск формирования злокачественных новообразований [11,16].

Доказано, что витамин D блокирует взаимодействие иммунных клеток, что позволило его применять в комплексной терапии аутоиммунных заболеваний, предположительно связанных с гиперпродукцией цитокинов [17]. Исследования последних десятилетий продемонстрировали, что недостаточность витамина D является

одним из факторов развития артериальной гипертензии, застойной сердечной недостаточности, ИБС, инсулинорезистентности и сахарного диабета, ожирения, системной красной волчанки, рака кишечника, молочной и предстательной железы, депрессивных расстройств [10,12,18-23].

Обнаружено множество генов, работа которых регулируется VD. Такие участки названы VDRE (vitamin D response elements), они примыкают к генам, активируемым белковым комплексом VDR-RXR. Эти гены кодируют пептиды каталицидин и β2-дефензин антимикробных пептидов (АМП), обладающих противомикробной активностью [24]. Синтез в коже АМП обеспечивает защиту от инфекций, т.к. они встраиваются в цитоплазматическую мембрану бактерий и, приводя к образованию пор, нарушают целостность бактериальной клетки.

Каталицидины являются главными белками специфических гранул нейтрофилов, обладают прямой антимикробной активностью и оказывают синергический антибактериальный эффект с дефензинами. Каталицидины влияют на экспрессию генов иммунного ответа: в т.ч. на все стадии дифференцировки и функции Тклеток, активность дендритных клеток и секрецию ряда цитокинов (в частности, интерферона-ү), способствуя темсамым поляризации лимфоцитов по пути, ведущему к Th1; могут изменять T- и Bклеточные ответы. Инфекция дыхательных путей приводит к активации витамина D и увеличению концентрации мРНК кателицилина. Полобная активация витамина D может быть важной составной частью системы защиты организма, поскольку она обладает нисходящими воздействиями, включая усиление экспрессии гена кателицидина, являющегося значимым компонентом врожденного иммунитета легких [15].

Витамин D индуцирует соответствующее увеличение АМП и антибактериальной активности против патогенов, включая *P. Aeruginosa* [25]. Каталициди-

нактивен в отношении *М. Tuberculosis*, а также грамположительных и отрицательных бактерий, вирусов и грибов. Доказано, что дети с недостаточным синтезом каталицидина чаще страдают ОРИ верхних и нижних дыхательных путей. Стимуляция VDR индуцирует аутофагию в клетках, пораженных микобактериями туберкулеза и вирусом ВИЧ, что препятствует размножению этих агентов [15].

Несмотря на то, что многочисленные типы клеток человеческого организма экспрессируют VDR и 1а-гидроксилазу, доказано, что VDR-опосредованная индукция АМП не является универсальной для всех типов клеток организма и в естественных условиях зависит от множества различных внешних и внутренних факторов. VDR-опосредованная индукция АМП является характерной особенностью миелоидных клеток, кератиноцитов, эпителиоцитов пищеварительного и респираторного трактов, трофобластов. Витамин-D-зависимое регулирование продукции АМП в эпителиоцитах слизистой оболочки толстого кишечника, регулярно взаимодействующих с комменсальными кишечными бактериями, существенным образом отличается от VDR-опосредованной индукции АМП моноцитами, кератиноцитами и клетками плаценты. Wang T.T., et al. (2004) продемонстрировали, что кальцитриол-ассоциированный сигнальный путь функционально связан с цитоплазматическим рецептором NLRC2. Данные рецепторы экспрессируются макрофагами, альвеолярными макрофагами, дендритными клетками, нейтрофилами, эпителиоцитами респираторного тракта, кератиноцитами, ацидофильными энтероцитами слизистой оболочки кишечника и эндотелиоцитами. Возбуждение NLRC2 мурамилдипептидом при адекватном обеспечении кальцитриолом способствует увеличению практически в два раза продукции дефензина и кателицидина эпителиоцитами слизистой оболочки толстого кишечника, поэтому дефицит витамина D трактуется авторами как одна из основных причин развития болезни Крона [25].

Кроме того доказано, что 1,25(OH)2D, является модулятором иммунной системы и индуцирует экспрессию TL14-корецептора CD14. За счет прямого воздействия кальцитриолана активированные Т-лимфоциты уменьшается продукция провоспалительных цитокинов – ИЛ-12, ИНФу, ФНОа, гранулоцитарно-макрофагального колониестимулирующего фактора (ГМ-КСФ). ГМ-КСФ способен ингибировать пролиферацию цитотоксических Т-лимфоцитов и естественных киллеров, а также стимулировать активность Т-супрессоров, поддерживая резистентность организма к собственным агентам [26,27]. 1,25(OH)2D взаимодействует с Т-хелперами, но не оказывает непосредственного влияния на В-лимфоциты, нивелирует их активирующее влияние на продукцию антител [28,29] (рис. 2).

В ходе исследований Jackson D.J., et al. (2010) обнаружили, что у детей с дефицитом VD имеется больший риск респираторных инфекций, являющихся наиболее распространенной причиной «wheezing» [30]. Результаты опроса населения (NHANES III, 1988-1994), свидетельствует, что у пациентов с дефицитом VD и рецидивирующими свистящими хрипами имеется повышенный риск инфекций дыхательных путей [31]. Эти данные согласуются с гипотезой о том, что VD может ослабить легочные антимикробные реакции, особенно у лиц, страдающих БОС. Дальнейшая поддержка этой гипотезы исходит из рандомизированного двойного слепого интервенционного исследования, проведенного Majak P., et al. (2012), которые впервые продемонстрировали, что назначение VD (500 МЕ/день), детям с рецидивирующими свистящими хрипами в качестве адъювантной терапии параллельно с ингаляционными глюкокортикоидами, уменьшает риск обострения БОС, вызванный респираторными инфекциями [32,33].

В исследованиях, проведенных Ozdogan S., et al. продемонстрирована достоверная корреляция низких концентраций 25(OH)D с увеличением уровня общего белка IgE у детей с бронхиальной

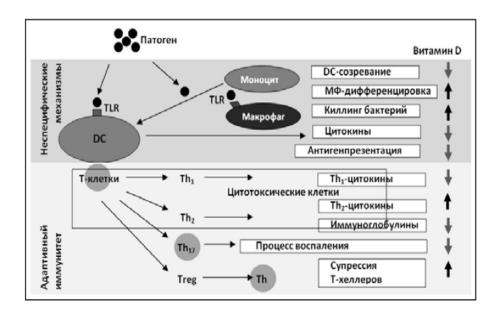


Рис. 2. Влияние витамина D на неспецифические механизмы защиты и иммунную систему организма [29]

астмой, аллергическим ринитом (АР), атопическим дерматитом [34]. Отмечалась связь недостаточности 25(OH)D с повышением уровней специфических IgE к ингаляционным аллергенам у детей с БА и конкретно к аллергенам клеща домашней пыли в когорте детей раннего возраста [35]. Полученные результаты продемонстрировали, что статус витамина D может иметь нелинейную корреляцию с риском аллергической сенсибилизации и корреляцию между заболеваемостью БА и низким уровнем 25(ОН) D. Причины этого могут быть связаны, в т.ч. с непосредственным влиянием витамина D на гладкомышечные клетки дыхательных путей и частоту респираторных инфекций [36].

Исследования последних лет продемонстрировали, что адекватная обеспеченность VD женщины в период беременности является залогом полноценного развития органов и систем ребенка, т.к. 25(OH)D из организма матери свободно транспортируется через плаценту к плоду и участвует в процессах эмбриогенеза, тем самым способствует росту и развитию плода, регулирует формирование костной системы, пролиферацию эндотелия, лимфоцитов, кожи, дендритных клеток, гладких мышц,

сосудов, контролирует синтез некоторых гормонов плаценты. Предполагается, что в организме плода происходит трансформа-25(OH)D активную В форму 1,25(OH)2D, которая, связываясь с рецепторами VDR, оказывает свое биологическое действие. Плацента содержит VDR, поэтому является таргетным органом для синтезированного в ней же 1,25(OH)2D, который регулирует выделение и секрецию хорионического гонадотропина человека в синтициотрофобласте и увеличивает плацентарное производство половых стероидов [37]. Таким образом, 25(ОН)D пуповинной крови напрямую коррелирует с концентрацией витамина D в крови матери, а при его дефиците в организме матери отмечается задержка дифференцировки основных структур головного мозга плода, увеличивается риск формирования сахарного диабета, аутоиммунной патологии, онкологических заболеваний [38]. Так опубликованном Pérez-López F.R., et al. (2015) обзоре и мета-анализе рандомизированных клинических исследований приведены данные о позитивном влиянии приема витамина D во время беременности на массу плода при рождении и продолжительность беременности [39].

Оценка влияния профилактического приема витамина D на частоту формирования БОС и wheezing проводилась рядом ученых, в т.ч. изучалась эффективность антенатальных мероприятий. Так Andersen L.N., et al. опубликовано когортное исследование 2478 детей в возрасте до 5 лет (2008-2013), получавших витамин D в качестве анте- и постнатальной профилактики. В результате исследования установлено, что в группе детей, матери которых получали витамин D во время беременности регистрировались более редкие приступы «wheezing» по сравнению с детьми, получавшими профилактические дозы витамина D только постнатально [40]. В другом исследовании, проводимом США с участием 876 беременных женщин и 806 детей (2009-2015), было доказано, что получение беременной в третьем триместре 4400 МЕ витамина D, позволило обеспечить адекватный VD-статус женщин, по сравнению с беременными, принимавшими VD в дозе 400 ME. Однако частота приступов «wheezing» у рожденных ими детей была равнозначной и не зависела от дозировки препарата [41].

В опубликованном Shen S.-Y., et al. (2018) систематическом обзоре и метаанализе когортных исследований не обнаружено никакой связи между антенатальным уровнем витамина D в крови и астмой/«wheezing» в старшем возрасте. Однако исследования подтвердили, что профилактическое употребление витамина D в раннем возрасте может повлиять на частоту астмы у детей старше 5 лет или /«wheezing». Однако авторы указывают на необходимость проведения дополнительных исследований [42].

Для определения обеспеченности организма витамином D используется единственный метаболит — 25(OH)D, который включает в себя витамин D, полученный из продуктов питания и синтезируемый в коже вследствие пребывания на солнце. Несмотря на то, что 1,25(OH)2D является биологически активной формой витамина D, концентрация его в сыворот-

ке крови не дает качественной информации о статусе витамина D в организме и часто является нормальной или даже повышенной вследствие вторичного гиперпаратиреоза, связанного с дефицитом витамина D. Это обусловлено повышением синтеза ПТГ, регулирующего метаболизм Са, увеличением продукции в почках 1,25(OH)2D. Кроме того, период полураспада 1,25(OH)2D составляет 4-6 часов, а число циркулирующих молекул данного метаболита в тысячу раз меньше, чем 25(OH)D [43]. Кроме того 1,25(OH)2D может быть синтезирован в клетках поджелудочной железы, сосудистого эндотелия, желудка, эпидермиса, толстой кишки, иммунной системы, а также макрофагами и плацентой [10].

Согласно Национальной программе и критериям Международного общества эндокринологов количественное определение уровня 25(ОН)2Д в сыворотке крови выполняют методом иммуноферментного анализа. Нормальный уровень обеспеченности витамином D определяется при уровне 25(ОН)2Д выше 30 нг/мл, недостаточность — при уровне в пределах 20-30 нг/мл, тяжелый дефицит — менее 10 нг/мл [44].

В настоящее время распространенность дефицита витамина D в популяции достигает эпидемического уровня, что обусловлено различными причинами, среди которых географическое расположение района исследования, особенности климата и уровня годовой инсоляции, характер и привычки питания населения и т.д. Кроме того на интенсивность синтеза длина волны солнечного света, уровень загрязненности атмосферы, пигментации кожи. Поэтому в солнечных, но загрязненных участках земного шара, чрезвычайно распространена низкая обеспеченность витамином D [44-46].

В России, по результатам многоцентрового исследования (2013-2014), недостаточность и дефицит витамина D у детей раннего возраста в разных городах составля-

ли от 48 до 90,8%; лишь 10% детей третьего года жизни имели оптимальный уровень обеспеченности данным витамином [10].

Свой вклад в развитие дефицита витамина D у детей в нашей стране вносит расположение большей ее части в северной широте выше 35 параллели. В силу этого из-за более острого угла падения солнечных лучей и их рассеивания в атмосфере в период с ноября по март отсутствие выработки витамина D в коже становится закономерным [43] (табл. 2).

Среди детей грудного возраста также имеет место снижение обеспеченности этого витамина, особенно среди тех, кто находится на исключительно грудном вскармливании, т.к. в 1 литре грудного молока содержится 40-80 ME витамина D. Более того, младенцы представляют группу высокого риска по развитию дефицита витамина D ввиду высокой потребности в нем из-за физиологически высоких темпов роста костей скелета. Среди детей, родившихся в осенние месяцы, в северных широтах, особенно высок риск развития дефицита VD, так как климатические условия не позволяют длительно находиться вне помещения, что резко ограничивает синтез витамина D в коже. В то же время развитие гиповитаминоза возможно и в более южных регионах, из-за низкого объема ультрафиолетового облучения в осенне-зимние месяцы, облачности и смога. Таким образом, применение рекомендованных ранее профилактических доз витамина D для детей грудного возраста (500 ME/сут.) может быть достаточным для обеспечения кальциево-фосфорного метаболизма, но не для реализации «неклассических» функций витамина D [37].

Профилактика дефицита витамина D в РФ исторически рассматривалась как профилактика рахита (500 МЕ в сутки у детей первых двух лет жизни) без определения уровня обеспеченности витамином D [47]. На сегодняшний день во многих странах, в т.ч. и в России, существуют национальные, континентальные консенсусы и практические рекомендации по профилактике гиповитаминоза D. Доказана эффективность курсового приема препаратов витамина D в дозировке от 1000 до 3000 МЕ в сутки в течение 30 дней для нормализации обеспеченности организма витамином D; выявлена прямая связь между суточной дозировкой холекальциферола и приростом уровня 25(ОН) В сыворотке крови [48].

Анализ результативных исследований показал, что диапазон эффективных и безопасных доз витамина D — в пределах 800-4000 МЕ в сутки. При использовании таких доз в течение среднем 6 месяцев у детей и подростков достигается частичная компенсация дефицита витамина Dи не наблюдается гиперкальциемии. Уровень 25(ОН)D в 20 нг/мл и выше необходим для эффективной профилактики костных проявлений дефицита витамина D, а достижение значений в диапазоне 30-100 нг/мл позволяет предупредить внекостные проявления гиповитаминозаD у детей.

Таблица 2 Рекомендации по дозам холекальциферола для профилактики гиповитаминоза витамина D [43]

Возраст	Профилактическая доза	Профилактическая доза для Европейского Севера России
1-6 месяцев	1000 ME/сут*	1000 ME/cyr*
от 6 до 12 месяцев	1000 ME/сут*	1500 ME/cyr*
от 1 года до 3 лет	1500 МЕ/сут	1500 МЕ/сут
от 3 до 18 лет	1000 МЕ/сут	1500 МЕ/сут

Примечание: * – вне зависимости от вида вскармливания (не требуется пересчета дозы для детей на смешанном и искусственном вскармливании)

Таким образом, на сегодняшний день значительно расширились представления о роли витамина D в организме. Возможности применения витамина D в комплексе профилактических мероприятий и адъювантной терапии инфекций, сопровождающихся БОС, требует дальнейших научных исследований.

Дополнительная информация

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, о которых необходимо сообщить, в связи с публикацией данной статьи.

Финансирование исследования. Бюджет ФГБОУ ВО РязГМУ Минздрава России.

Участие авторов:

Концепция и дизайн исследования, редактирование текста – Белых Н.А.

Сбор и обработка материала, написание текста – Амелина В.В.

Литература

- 1. Симонова О.И., Горинова Ю.В., Алексеева А.А., и др. Бронхообструктивный синдром у детей: новое решение старой проблемы // Вопросы современной педиатрии. 2015. №14(2). С. 276-280.
- 2. Зайцева О.В. Бронхообструктивный синдром у детей // Педиатрия. 2005. №4. С. 94-104.
- Павлова Т.В., Пилькевич Н.Б., Трофимова О.А. Патогенетическая роль отягощенного аллергологического анамнеза в развитии бронхитов у детей // Российский медико-биологический вестник имени академика И.П.Павлова. 2016. №2. С. 73-78.
- 4. Больбот Ю.К., Годяцкая Е.К. Витамин D и значение его дефицита в развитии бронхообструктивного синдрома у детей раннего возраста. В кн.: Состояние здоровья: медицинские, социальные и психолого-педагогические аспекты. Чита; 2016. С. 249-256.
- Global strategy for asthma management and prevention (updated 2014): Global Initiative for Asthma (GINA). Доступно по: http://www.ginasthma.org. Ссылка активна на 18.05.2018.
- 6. Гармаш В.Я., Куликов С.А. История развития представлений о бронхиальной астме // Наука молодых (Eruditio Juvenium). 2018. Т. 6, №2. С. 298-307.
- El-Radhi A.S., Majeed M., Mansor N., et al. High incidence of rickets in children with wheezy bronchitis in a developing country // J. R. Soc. Med. 1982. Vol. 75. P. 884-887.
- 8. Kunisaki K.M., Niewoehner D.E., Singh R.J., et al. Vitamin D status and longitudinal lung function decline in the Lung Health Study // Eur. Respir. J. 2011. Vol. 37, № 2. P. 238-243.
- 9. Holick M.F. Vitamin D status: measurement, interpretation and clinical application // Ann. Epidemiol. 2009. Vol. 19 (2). P. 73-78.
- 10. Захарова И.Н., Яблочкова С.В., Дмитриева А.Ю. Известные и неизвестные эффекты витамина Д // Вопросы современной педиатрии. 2013. Т. 12, №2. С. 20-25.
- 11. Майданник В.Г. Вітамин Д, імунна система і профілактика гострих респіраторних інфекцій

- // Міжнародний журнал педіатрії, акушерства та гінекології. 2017. Т. 11, №4. С. 38-53.
- 12. Ворслов Л.Ю., Тюзиков И.А., Калинченко С.Ю., и др. Квартет здоровья новая концепция современной профилактической и эстетической медицины: витамин Д, возможности внутреннего и наружного применения // Косметика & Медицина. 2015. №4. С. 56-64.
- 13. Реушева С.В., Паничева Е.А., Пастухова С.Ю., и др. Значение витамина Д в развитии заболеваний человека // Успехи современного естествознания. 2013. №11. С. 27-31.
- 14. DeLuca H.F., Cantorna M.T. Vitamin D: its role and uses in immunology // FASEB J. 2001. Vol. 15, №14. P. 2579-2585.
- 15. Iqbal S.F., Freishtat R.J. Mechanism of action of vitamin D in the asthmatic lung // J. Investig Med. 2011. Vol. 59, №8. P. 1200-1202.
- 16. Martineau A.R., Jolliffe D.A., Hooper R.L., et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data // BMJ. 2017. P. 356.
- 17. Takiishi T., Korf H., et al. Vitamin D: modulator of the immune system // Curr. Opin. Pharmacol. 2010. Vol. 10, №4. P. 482-496.
- 18. Wacker M., Holick M.F. Vitamin D-effects on skeletal and extra skeletal health and the need for supplementation // Nutrients. 2013. №5(1). P. 111-148.
- 19. Pourshahidi L.K. Vitamin D and obesity: current perspectives and future directions // Proceedings of the Nutrition Society. 2014. First View. P. 1-10.
- 20. Antico A., Tampoia M., Tozzoli R., et al. Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature // Autoimmunity Reviews. 2012. №12. P. 127-136.
- 21. Seida J.C., Mitri J., Colmers I.N., et al. Effect of Vitamin D Supplementation on Improving Glucose Homeostasis and Preventing Diabetes: A Systematic Review and Meta-Analysis // J. Clin. Endocrinol. Metab. 2014. №99. P. 3551-3560.
- 22. Autier Ph., Mullie P., Macacu A., et al. Effect of vitamin D supplementation on non-skeletal disord-

- ers: a systematic review of meta-analyses and randomised trials // The Lancet. 2017. Vol. 5, №12. P. 986-1004.
- 23. Norman A.W. Vitamin D nutritional policy needs a vision for the future // Exp. Biol. Med. 2010. №235(9). P. 1034-1045.
- 24. Семин С.Г., Волкова Л.В., Моисеев А.Б. и др. Перспективы изучения биологической роли витамина Д// Педиатрия. 2012. Т. 91, №2. С. 122-130.
- 25. Wang T.T., Nestel F.P., Bourdeau V., et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression // J. Immunol. 2004. Vol. 173(5). P. 2909-2912.
- 26. Hayes C.E., Nashold F.E., Spach K.M., et al. The immunological function of the vitamin D endocrine system // Cell. Mol. Biol. (Noisy-le-grand). 2003. №49(2). P. 277-300.
- 27. Купаев В.И., Горемыкина М.С. Бронхиальная астма и витамин Д: современный взгляд на проблему // Астма и аллергия. 2015. №4. С. 5-8.
- 28. Коровина Н.А., Захарова И.Н., Дмитриева Ю.А. Современные представления о физиологической роли витамина Д у здоровых и больных детей // Педиатрия. 2008. Т. 87, №4. С. 124-129.
- 29. Абатуров А.Е. Витамин-D-зависимая продукция антимикробных пептидов // Здоровье ребёнка. 2012. №1 (36). С. 105-111.
- 30. Jackson D.J., Johnston S.L. The role of viruses in acute exacerbations of asthma // J. Allergy Clin. Immunol. 2010. №125. P. 1178-1187.
- 31. Ginde A.A., Mansbach J.M., Camargo C.A. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey // Arch. Intern. Med. 2009. Vol. 169. P. 384-390.
- 32. Majak P., Olszowiec-Chlebna M., Smejda K., et al. Vitamin D supplementation in children may prevent asthma exacerbation triggered by acute respiratory infection // J. Allergy Clin. Immunol. 2011. №127(5). P. 1294-1296.
- 33. Greiller C.L., Martineau A.R. Modulation of the Immune Response to Respiratory Viruses by Vitamin D // Nutrients. 2015. No7(6). P. 4240-4270.
- 34. Ozdogan S., et al. Vitamin D Status, Lung Function and Atopy in Children with Asthma // J. Coll. Physicians Surg. Pak. 2017. №27(5). P. 292-295.
- 35. Chiu C-Y., et al. Longitudinal vitamin D deficiency is inversely related to mite sensitization in early childhood // Pediatr. Allergy. Immunol. 2017. Vol. 9(3). P. 254-259. doi:10.1111/pai.12846
- 36. Hall S.C., Fischer K.D., Agrawal D.K. The impact of vitamin D on asthmatic human airway smooth muscle // Expert. Rev. Respir. Med. 2016. №10(2). P. 127-135.
- 37. Мальцев С.В., Мансурова Г.Ш., Закирова А.М., и др. Роль витамина D в системе мать-плодплацента // Практическая медицина. 2016. №1(93). С. 26-31.

- 38. Мальцев С.В., Закирова А.М., Мансурова Г.Ш. Обеспеченность витамином Д детей разных возрастных групп в зимний период // Российский вестник перинатологии и педиатрии. 2017. №62(2). С. 99-103.
- 39. Pérez-López F.R., Pasupuleti V., Mezones-Holguin E., et al. Effect of vitamin D supplementation during pregnancy on maternal and neonatal outcomes: a systematic review and meta-analysis of randomized controlled trials // Fertility and Sterility. 2015. Vol. 103(5). P. 1278-1288. doi:10. 1016/j.fertnstert.2015.02.019
- 40. Anderson L.N., Chen Y., Omand J.A., et al. Vitamin D exposure during pregnancy, but not early childhood, is associated with risk of childhood wheezing // Journal of Developmental Origins of Health and Disease. 2015. Vol. 6(4). P. 308-316. doi:10.1017/S2040174415001063
- 41. Litonjua A.A., Carey V.J., Laranjo N., et al. Effect of Prenatal Supplementation With Vitamin D on Asthma or Recurrent Wheezing in Offspring by Age 3 Years: The VDAART Randomized Clinical Trial // JAMA. 2016. №315 (4). P. 362-370. doi:10.1001/jama.2015.18589
- 42. Shen S.-Y., Xiao W.-Q., Lu J.-H., et al. Early life vitamin D status and asthma and wheeze: a systematic review and meta-analysis // BMC Pulmonary Medicine. 2018. №18, 120. C. 1-18. doi:10. 1186/s12890-018-0679-4
- 43. Захарова И.Н., Мальцев С.В., Боровик Т.Э., и др. Недостаточность витамина Д у детей раннего возраста в России: результаты многоцентрового когортного исследования РОДНИЧОК (2013-2014 гг.) // Вопросы современной педиатрии. 2014. Т. 13, №6. С. 30-34.
- 44. Национальная программа «Недостаточность витамина D у детей и подростков Российской Федерации: современные подходы к коррекции». М.; 2018.
- 45. Palacios C., Gonzalez L. Is vitamin D deficiency a major global public health problem? // Steroid. Biochem. Mall. Biol. 2014. №144. P. 138-145.
- 46. Тишов Ю.А., Ворслов Л.О., Жуков А.Ю., и др. Распространенность дефицита D-гормона у пациентов с ожирением в России: ретроспективное популяционное исследование. В кн.: Материалы VII Международного конгресса ISSAM. М.; 2013. С. 78-79.
- 47. Лукьянова Е.М., Воронцов И.М., Мальцев С.В. Профилактика и лечение рахита у детей раннего возраста. Методические рекомендации. М.; 1990.
- 48. Захарова И.Н., Климов Л.Я., Мальцев С.В., и др. Обеспеченность витамином D и коррекция его недостаточности у детей раннего возраста в Российской Федерации (фрагмент национальной программы) // Практическая медицина. 2017. №5 (106). С. 22-28.

References

- Simonova OI, Gorinova YuV, Alekseeva AA, et al. Bronchial obstruction in children: a new solution to an old problem. *Current Pediatrics*. 2015; 14(2):276-80. (In Russ). doi:10/15690/vsp.v14i2.1298
- Zaitseva OV. Bronkhoobstruktivnyi sindrom u detei. *Pediatriya*. 2005;(4):94-104. (In Russ).
- 3. Pavlova TV, Pil'kevich NB, Trofimova OA. Pathogenetic role in the allergic anamnesis development bronchitis in children. *I.P. Pavlov Russian Medical Biological Herald.* 2016;(2):73-8. (In Russ).
- 4. Bol'bot YuK, Godyatskaya EK. Vitamin D i znachenie ego defitsita v razvitii bronkhoobstruktivnogo sindroma u detei rannego vozrasta. In: Sostoyanie zdorov'ya: meditsinskie, sotsial'nye i psikhologo-pedagogicheskie aspekty. Chita; 2016. P. 249-56. (In Russ).
- 5. Global strategy for asthma management and prevention (updated 2014): Global Initiative for Asthma (GINA). Avialible at: http://www.ginasthma.org. Accessed: 2018 May 18.
- 6. Garmash VY, Kulikov SA. The history of the concept of bronchial asthma. *Nauka Molodykh (Eruditio Juvenium)*. 2018;6(2):298-307. (In Russ).
- 7. El-Radhi AS, Majeed M, Mansor N, et al. High incidence of rickets in children with wheezy bronchitis in a developing country. *J R Soc Med.* 1982;(75):884-7.
- 8. Kunisaki KM, Niewoehner DE, Singh RJ, et al. Vitamin D status and longitudinal lung function decline in the Lung Health Study. *Eur Respir J*. 2011;37(2):238-43.
- 9. Holick MF. Vitamin D status: measurement, interpretation and clinical application. *Ann Epidemiol*. 2009;19(2):73-8.
- Zakharova IN, Yablochkova SV, Dmitrieva AYu.
 Well-known and Indeterminate Effects of Vitamin
 D. Current Pediatrics. 2013;12(2):20-5. (In Russ)
- 11. Maidannyk VG, Demchuk SM. Treatment and prevention of vitamin-D-deficient rickets in children. *International Journal of Pediatrics, Obstetrics and Gynecology.* 2017;11(4):38-53. (In Ukrain).
- 12. Vorslov LYu, Tyuzikov IA, Kalinchenko SY, et al. Kvartet zdorov'ya – novaya kontseptsiya sovremennoi profilakticheskoi i esteticheskoi meditsiny: vitamin D, vozmozhnosti vnutrennego i naruzhnogo primeneniya. Kosmetika & Meditsina. 2015; (4):56-64. (In Russ).
- 13. Reusheva SV, Panicheva EA, Pastukhova SY, et al. The value of vitamin d deficiency in the development of human diseases. *Advances in current natural sciences*. 2013;(11):27-31. (In Russ).
- 14. DeLuca HF, Cantorna MT. Vitamin D: its role and uses in immunology. *FASEB* J. 2001;15(14):2579-85.
- 15. Iqbal SF, Freishtat RJ. Mechanism of action of vitamin D in the asthmatic lung. *J Investig Med*. 2011;59(8):1200-2.
- Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory

- tract infections: systematic review and meta-analysis of individual participant data. *BMJ*. 2017. P. 356.
- 17. Takiishi T, Korf H, et al. Vitamin D: modulator of the immune system. *Curr Opin Pharmacol*. 2010; 10(4):482-96.
- 18. Wacker M. Vitamin D-effects on skeletal and extra skeletal health and the need for supplementation. *Nutrients*. 2013;5(1):111-48.
- 19. Pourshahidi LK. Vitamin D and obesity: current perspectives and future directions. *Proceedings of the Nutrition Society*. 2014;First View:1-10.
- 20. Antico A, Tampoia M, Tozzoli R, et al. Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. *Autoimmunity Reviews*. 2012;(12):127-36.
- 21. Seida JC, Mitri J, Colmers IN, et al. Effect of Vitamin D Supplementation on Improving Glucose Homeostasis and Preventing Diabetes: A Systematic Review and Meta-Analysis. *J Clin Endocrinol Metab.* 2014;(99):3551-60.
- 22. Autier Ph, Mullie P, Macacu A, et al. Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. *The Lancet*. 2017;5(12):986-1004.
- 23. Norman AW. Vitamin D nutritional policy needs a vision for the future. *Exp Biol Med.* 2010;235(9): 1034-45
- 24. Semin SG, Volkova LV, Moiseev AB, et al. Perspektivy izucheniya biologicheskoi roli vitamina D. *Pediatriya*. 2012;91(2):122-30. (In Russ).
- 25. Wang TT, Nestel FP, Bourdeau V, et al. 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. *J Immunol*. 2004; 173(5):2909-12.
- 26. Hayes CE, Nashold FE, Spach KM, et al. The immunological function of the vitamin D endocrine system. *Cell Mol Biol (Noisy-le-grand)*. 2003; 49(2):277-300.
- 27. Kupaev VI, Goremykina MS. Bronkhial'naya astma i vitamin D: sovremennyi vzglyad na problemy. *Astma i allergiya.* 2015;(4):5-8. (In Russ).
- 28. Korovina NA, Zakharova IN, Dmitrieva YuA. Sovremennye predstavleniya o fiziologicheskoi roli vitamina D u zdorovykh i bol'nykh detei. *Pediatriya*. 2008;87(4):124-9. (In Russ).
- 29. Abaturov AE. Vitamin D Dependent Production of Antimicrobial Peptides. *Child`S Health*. 2012; 1(36):105-11. (In Russ).
- 30. Jackson DJ, Johnston SL. The role of viruses in acute exacerbations of asthma. *J Allergy Clin Immunol*. 2010;(125):1178-87.
- 31. Ginde AA, Mansbach JM, Camargo CA. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. *Arch Intern Med.* 2009;(169):384-90.
- 32. Majak P, Olszowiec-Chlebna M, Smejda K, et al. Vitamin D supplementation in children may pre-

- vent asthma exacerbation triggered by acute respiratory infection. *J Allergy Clin Immunol*. 2011; 127(5):1294-6.
- 33. Greiller CL, Martineau AR. Modulation of the Immune Response to Respiratory Viruses by Vitamin D. *Nutrients*. 2015;7(6):4240-70.
- 34. Ozdogan S, et al. Vitamin D Status, Lung Function and Atopy in Children with Asthma. *J Coll Physicians Surg Pak.* 2017;27(5):292-5.
- 35. Chiu C-Y, et al. Longitudinal vitamin D deficiency is inversely related to mite sensitization in early childhood. *Pediatr Allergy Immunol*. 2017;9(3): 254-9. doi:10.1111/pai.12846
- 36. Hall SC, Fischer KD, Agrawal DK. The impact of vitamin D on asthmatic human airway smooth muscle. *Expert Rev Respir Med.* 2016;10(2):127-35.
- 37. Mal'tsev SV, Mansurova GSh, Zakirova AM, et al. The role of vitamin D in the system of mother-placenta-fetus. *Practical medicine*. 2016;1(93):26-31. (In Russ).
- 38. Mal'tsev SV, Zakirova AM, Mansurova GSh. Vitamin D provision in children of different age groups during the winter season. *Russian Bulletin of Perinatology and Pediatrics*. 2017;62(2):99-103. (In Russ).
- 39. Pérez-López FR, Pasupuleti V, Mezones-Holguin E, et al. Effect of vitamin D supplementation during pregnancy on maternal and neonatal outcomes: a systematic review and meta-analysis of randomized controlled trials. *Fertility and Sterility* 2015; 103(5)1278-88. doi:10.1016/j.fertnstert.2015.02.019
- 40. Anderson LN, Chen Y, Omand JA, et al. Vitamin D exposure during pregnancy, but not early childhood, is associated with risk of childhood wheezing. *Journal of Developmental Origins of Health and Disease*. 2015;6(4):308-16. doi:10. 1017/S2040174415001063

- 41. Litonjua AA, Carey VJ, Laranjo N, et al. Effect of Prenatal Supplementation With Vitamin D on Asthma or Recurrent Wheezing in Offspring by Age 3 Years: *The VDAART Randomized Clinical Trial. JAMA*. 2016;315(4):362-70. doi:10.1001/jama.2015.18589
- 42. Shen S-Y, Xiao W-Q, Lu J-H, et al. Early life vitamin D status and asthma and wheeze: a systematic review and meta-analysis. *BMC Pulmonary Medicine*. 2018;18(120):1-18. doi:10.1186/s12890-018-0679-4
- 43. Zakharova IN, Mal'tsev SV, Borovik TE, et al. Vitamin D Insufficiency in Children of Tender Years in Russia: the Results of a Multi-Centre Cohort Study RODNICHOK (2013-2014). *Voprosy sovremennoi pediatrii*. 2014;13(6):30-4. (In Russ).
- 44. Natsional'naya programma «Nedostatochnost' vitamina D u detei i podrostkov Rossiiskoi Federatsii: sovremennye podkhody k korrektsii». Moscow; 2018. (In Russ).
- 45. Palacios C, Gonzalez L. Is vitamin D deficiency a major global public health problem? *Steroid Biochem Mall Biol.* 2014;(144):138-45.
- 46. Tishov YuA, Vorslov LO, Zhukov AYu, et al. Rasprostranennost' defitsita D-gormona u patsientov s ozhireniem v Rossii: retrospektivnoe populyatsionnoe issledovanie. In: *Materialy VII Mezhdunarodnogo kongressa ISSAM*. Moscow; 2013. P. 78-9. (In Russ).
- 47. Luk'yanova EM, Vorontsov IM, Mal'tsev SV. *Profilaktika i lechenie rakhita u detei rannego vozrasta*. Moscow; 1990. (In Russ).
- 48. Zakharova IN, KlimovLYa, Mal'tsev SV, et al. Security of vitamin D and correction of its insufficiency in children of early age in the Russian Federation (fragment of the national program). *Practical Medicine*. 2017;5(106):22-8. (In Russ).

Информация об авторах [Authors Info]

*Белых Наталья Анатольевна — д.м.н., зав. кафедрой поликлинической педиатрии с курсом педиатрии, Рязанский государственный медицинский университет имени академика И.П. Павлова, Рязань, Российская Федерация. e-mail: nbelyh68@mail.ru SPIN: 2199-6358, ORCID ID: 0000-0002-5533-0205, Researcher ID: L-2177-2018.

Natalya A. Belykh – MD, PhD, Head of the Department of Polyclinic Pediatrics with the Course of Pediatrics of the Faculty of Additional Professional Education, Ryazan State Medical University, Ryazan, Russian Federation. e-mail: nbelyh68@mail.ru SPIN: 2199-6358, ORCID ID: 0000-0002-5533-0205, Researcher ID: L-2177-2018.

Амелина Виталина Витальевна – ассистент кафедры поликлинической педиатрии с курсом педиатрии факультета дополнительного профессионального образования, Рязанский государственный медицинский университет имени академика И.П. Павлова, Рязань, Российская Федерация.

SPIN: 7075-7476, ORCID ID: 0000-0003-2602-6543, Researcher ID: T-3318-2018.

Vitalina V. Amelina – Assistant of the Department of Polyclinic Pediatrics with the course of Pediatrics of the Faculty of Additional Professional Education, Ryazan State Medical University, Ryazan, Russian Federation.

SPIN: 7075-7476, ORCID ID: 0000-0003-2602-6543, Researcher ID: T-3318-2018.

Цитировать: Белых Н.А., Амелина В.В. Значение дефицита витамина D в формировании бронхообструктивного синдрома у детей // Наука молодых (Eruditio Juvenium). 2019. Т. 7, №2. С. 261-273. doi:10.23888/HMJ201972261-273

To cite this article: Belykh NA, Amelina VV. Significance of vitamin D deficiency in the formation of bronchial obstructive syndrome in children. *Science of the young (Eruditio Juvenium)*. 2019;7(2):261-73. doi:10.23888/HMJ201972261-273

Поступила / Received: 06.12.2018 **Принята в печать / Accepted:** 20.06.2019